<thead id="fflbj"><font id="fflbj"><cite id="fflbj"></cite></font></thead>
    <progress id="fflbj"><thead id="fflbj"><font id="fflbj"></font></thead></progress>

            曙海教育集團
            全國報名免費熱線:4008699035 微信:shuhaipeixun
            或15921673576(微信同號) QQ:1299983702
            首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
             
            Natural Language Processing - AI/Robotics培訓

             
               班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
                   每期人數限3到5人。
               上課時間和地點
            上課地點:【上海】:同濟大學(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協同大廈
            最近開課時間(周末班/連續班/晚班):2019年1月26日
               實驗設備
                 ☆資深工程師授課
                    
                    ☆注重質量 ☆邊講邊練

                    ☆合格學員免費推薦工作
                    ★實驗設備請點擊這兒查看★
               質量保障

                    1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
                    2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
                    3、培訓合格學員可享受免費推薦就業機會。

            課程大綱
             

            Detailed training outline

            Introduction to NLP
            Understanding NLP
            NLP Frameworks
            Commercial applications of NLP
            Scraping data from the web
            Working with various APIs to retrieve text data
            Working and storing text corpora saving content and relevant metadata
            Advantages of using Python and NLTK crash course
            Practical Understanding of a Corpus and Dataset
            Why do we need a corpus?
            Corpus Analysis
            Types of data attributes
            Different file formats for corpora
            Preparing a dataset for NLP applications
            Understanding the Structure of a Sentences
            Components of NLP
            Natural language understanding
            Morphological analysis - stem, word, token, speech tags
            Syntactic analysis
            Semantic analysis
            Handling ambigiuty
            Text data preprocessing
            Corpus- raw text
            Sentence tokenization
            Stemming for raw text
            Lemmization of raw text
            Stop word removal
            Corpus-raw sentences
            Word tokenization
            Word lemmatization
            Working with Term-Document/Document-Term matrices
            Text tokenization into n-grams and sentences
            Practical and customized preprocessing
            Analyzing Text data
            Basic feature of NLP
            Parsers and parsing
            POS tagging and taggers
            Name entity recognition
            N-grams
            Bag of words
            Statistical features of NLP
            Concepts of Linear algebra for NLP
            Probabilistic theory for NLP
            TF-IDF
            Vectorization
            Encoders and Decoders
            Normalization
            Probabilistic Models
            Advanced feature engineering and NLP
            Basics of word2vec
            Components of word2vec model
            Logic of the word2vec model
            Extension of the word2vec concept
            Application of word2vec model
            Case study: Application of bag of words: automatic text summarization using simplified and true Luhn's algorithms
            Document Clustering, Classification and Topic Modeling
            Document clustering and pattern mining (hierarchical clustering, k-means, clustering, etc.)
            Comparing and classifying documents using TFIDF, Jaccard and cosine distance measures
            Document classifcication using Na?ve Bayes and Maximum Entropy
            Identifying Important Text Elements
            Reducing dimensionality: Principal Component Analysis, Singular Value Decomposition non-negative matrix factorization
            Topic modeling and information retrieval using Latent Semantic Analysis
            Entity Extraction, Sentiment Analysis and Advanced Topic Modeling
            Positive vs. negative: degree of sentiment
            Item Response Theory
            Part of speech tagging and its application: finding people, places and organizations mentioned in text
            Advanced topic modeling: Latent Dirichlet Allocation
            Case studies
            Mining unstructured user reviews
            Sentiment classification and visualization of Product Review Data
            Mining search logs for usage patterns
            Text classification
            Topic modelling

             
              備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)...............
            538在线视频二三区视视频