<thead id="fflbj"><font id="fflbj"><cite id="fflbj"></cite></font></thead>
    <progress id="fflbj"><thead id="fflbj"><font id="fflbj"></font></thead></progress>

            曙海教育集團
            全國報名免費熱線:4008699035 微信:shuhaipeixun
            或15921673576(微信同號) QQ:1299983702
            首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
             
            Neural Network in R培訓
             
               班級人數--熱線:4008699035 手機:15921673576( 微信同號)
                  增加互動環節, 保障培訓效果,堅持小班授課,每個班級的人數限3到5人,超過限定人數,安排到下一期進行學習。
               授課地點及時間
            上課地點:【上?!浚和瑵髮W(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【廣州分部】:廣糧大廈 【西安分部】:協同大廈 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈
            開班時間(連續班/晚班/周末班):2020年3月16日
               課時
                 ◆資深工程師授課
                    
                    ☆注重質量 ☆邊講邊練

                    ☆若學員成績達到合格及以上水平,將獲得免費推薦工作的機會
                    ★查看實驗設備詳情,請點擊此處★
               質量以及保障

                  ☆ 1、如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
                  ☆ 2、在課程結束之后,授課老師會留給學員手機和E-mail,免費提供半年的課程技術支持,以便保證培訓后的繼續消化;
                  ☆3、合格的學員可享受免費推薦就業機會。
                  ☆4、合格學員免費頒發相關工程師等資格證書,提升您的職業資質。

            課程大綱
             
            1. Day 1
              Introduction and preliminaries
              Making R more friendly, R and available GUIs
              Rstudio
              Related software and documentation
              R and statistics
              Using R interactively
              An introductory session
              Getting help with functions and features
              R commands, case sensitivity, etc.
              Recall and correction of previous commands
              Executing commands from or diverting output to a file
              Data permanency and removing objects
              Simple manipulations; numbers and vectors
              Vectors and assignment
              Vector arithmetic
              Generating regular sequences
              Logical vectors
              Missing values
              Character vectors
              Index vectors; selecting and modifying subsets of a data set
              Other types of objects
              Objects, their modes and attributes
              Intrinsic attributes: mode and length
              Changing the length of an object
              Getting and setting attributes
              The class of an object
              Ordered and unordered factors
              A specific example
              The function tapply() and ragged arrays
              Ordered factors
              Arrays and matrices
              Arrays
              Array indexing. Subsections of an array
              Index matrices
              The array() function
              Mixed vector and array arithmetic. The recycling rule
              The outer product of two arrays
              Generalized transpose of an array
              Matrix facilities
              Matrix multiplication
              Linear equations and inversion
              Eigenvalues and eigenvectors
              Singular value decomposition and determinants
              Least squares fitting and the QR decomposition
              Forming partitioned matrices, cbind() and rbind()
              The concatenation function, (), with arrays
              Frequency tables from factors
              Day 2
              Lists and data frames
              Lists
              Constructing and modifying lists
              Concatenating lists
              Data frames
              Making data frames
              attach() and detach()
              Working with data frames
              Attaching arbitrary lists
              Managing the search path
              Data manipulation
              Selecting, subsetting observations and variables
              Filtering, grouping
              Recoding, transformations
              Aggregation, combining data sets
              Character manipulation, stringr package
              Reading data
              Txt files
              CSV files
              XLS, XLSX files
              SPSS, SAS, Stata,… and other formats data
              Exporting data to txt, csv and other formats
              Accessing data from databases using SQL language
              Probability distributions
              R as a set of statistical tables
              Examining the distribution of a set of data
              One- and two-sample tests
              Grouping, loops and conditional execution
              Grouped expressions
              Control statements
              Conditional execution: if statements
              Repetitive execution: for loops, repeat and while
              Day 3
              Writing your own functions
              Simple examples
              Defining new binary operators
              Named arguments and defaults
              The '...' argument
              Assignments within functions
              More advanced examples
              Efficiency factors in block designs
              Dropping all names in a printed array
              Recursive numerical integration
              Scope
              Customizing the environment
              Classes, generic functions and object orientation
              Statistical analysis in R
              Linear regression models
              Generic functions for extracting model information
              Updating fitted models
              Generalized linear models
              Families
              The glm() function
              Classification
              Logistic Regression
              Linear Discriminant Analysis
              Unsupervised learning
              Principal Components Analysis
              Clustering Methods (k-means, hierarchical clustering, k-medoids)
              Survival analysis
              Survival objects in r
              Kaplan-Meier estimate
              Confidence bands
              Cox PH models, constant covariates
              Cox PH models, time-dependent covariates
              Graphical procedures
              High-level plotting commands
              The plot() function
              Displaying multivariate data
              Display graphics
              Arguments to high-level plotting functions
              Basic visualisation graphs
              Multivariate relations with lattice and ggplot package
              Using graphics parameters
              Graphics parameters list
              Automated and interactive reporting
              Combining output from R with text
              Creating html, pdf documents

             
             
              備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)....................
            友情鏈接:Cadence培訓 ICEPAK培訓 PCB設計培訓 adams培訓 fluent培訓系列課程 培訓機構課程短期培訓系列課程培訓機構 長期課程列表實踐課程高級課程學校培訓機構周末班培訓 南京 NS3培訓 OpenGL培訓 FPGA培訓 PCIE培訓 MTK培訓 Cortex訓 Arduino培訓 單片機培訓 EMC培訓 信號完整性培訓 電源設計培訓 電機控制培訓 LabVIEW培訓 OPENCV培訓 集成電路培訓 UVM驗證培訓 VxWorks培訓 CST培訓 PLC培訓 Python培訓 ANSYS培訓 VB語言培訓 HFSS培訓 SAS培訓 Ansys培訓 短期培訓系列課程培訓機構 長期課程列表實踐課程高級課程學校培訓機構周末班 端海 教育 企業 學院 培訓課程 系列班 長期課程列表實踐課程高級課程學校培訓機構周末班 短期培訓系列課程培訓機構 端海教育企業學院培訓課程 系列班
            538在线视频二三区视视频