<thead id="fflbj"><font id="fflbj"><cite id="fflbj"></cite></font></thead>
    <progress id="fflbj"><thead id="fflbj"><font id="fflbj"></font></thead></progress>

            曙海教育集團
            全國報名免費熱線:4008699035 微信:shuhaipeixun
            或15921673576(微信同號) QQ:1299983702
            首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
             
            Torch: Getting started with Machine and Deep Learning培訓

             
               班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
                   每期人數限3到5人。
               上課時間和地點
            開課地址:【上?!客瑵髮W(滬西)/新城金郡商務樓(11號線白銀路站)【深圳分部】:電影大廈(地鐵一號線大劇院站) 【武漢分部】:佳源大廈【成都分部】:領館區1號【沈陽分部】:沈陽理工大學【鄭州分部】:錦華大廈【石家莊分部】:瑞景大廈【北京分部】:北京中山學院 【南京分部】:金港大廈
            最新開班 (連續班 、周末班、晚班):2020年3月16日
               實驗設備
                 ☆資深工程師授課
                    
                    ☆注重質量 ☆邊講邊練

                    ☆合格學員免費推薦工作
                    ★實驗設備請點擊這兒查看★
               質量保障

                    1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
                    2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
                    3、培訓合格學員可享受免費推薦就業機會。

            課程大綱
             
            • Introduction to Torch
            • Like NumPy but with CPU and GPU implementation
              Torch's usage in machine learning, computer vision, signal processing, parallel processing, image, video, audio and networking
              Installing Torch
            • Linux, Windows, Mac
              Bitmapi and Docker
              Installing Torch packages
            • Using the LuaRocks package manager
              Choosing an IDE for Torch
            • ZeroBrane Studio
              Eclipse plugin for Lua
              Working with the Lua scripting language and LuaJIT
            • Lua's integration with C/C++
              Lua syntax: datatypes, loops and conditionals, functions, functions, tables, and file i/o.
              Object orientation and serialization in Torch
              Coding exercise
              Loading a dataset in Torch
            • MNIST
              CIFAR-10, CIFAR-100
              Imagenet
              Machine Learning in Torch
            • Deep Learning
              Manual feature extraction vs convolutional networks
              Supervised and Unsupervised Learning
              Building a neural network with Torch
              N-dimensional arrays
              Image analysis with Torch
            • Image package
              The Tensor library
              Working with the REPL interpreter
            • Working with databases
            • Networking and Torch
            • GPU support in Torch
            • Integrating Torch
            • C, Python, and others
              Embedding Torch
            • iOS and Android
              Other frameworks and libraries
            • Facebook's optimized deep-learning modules and containers
              Creating your own package
            • Testing and debugging
            • Releasing your application
            • The future of AI and Torch
            • Summary and Conclusion
             
              備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)....................
            538在线视频二三区视视频